If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16+b^2=121
We move all terms to the left:
16+b^2-(121)=0
We add all the numbers together, and all the variables
b^2-105=0
a = 1; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·1·(-105)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*1}=\frac{0-2\sqrt{105}}{2} =-\frac{2\sqrt{105}}{2} =-\sqrt{105} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*1}=\frac{0+2\sqrt{105}}{2} =\frac{2\sqrt{105}}{2} =\sqrt{105} $
| g-680=232 | | 25=f/12 | | 0=2.5*8+5.5*4-x*8 | | 8x^2=4.2 | | 7•x=-35 | | 20-7=5n+7 | | 20-7=5n-7 | | 4x+2x=4.2 | | 20-3=5n+1 | | Y=-3×-25×+2y=15 | | 6(3x+2)=3(4x+2) | | y+5=8y-4 | | 3a-1=10a-5 | | x+.0775x=119.57 | | x+7.75x=119.57 | | 99⁰+109⁰+65⁰+y⁰+2y⁰=360⁰ | | 4(p-2p)=3p+2 | | 84=32x | | 84=28x | | 4|m+1|=12 | | x+-7=3(2x-4) | | x+-7=3(2x-40 | | 2x2+x-7=0 | | x^-15x=0 | | 8/x=49 | | x^2-10x+25=16 | | x=15=75 | | x²=192 | | (q-4)^3=42 | | (2-5x+16)=1 | | 64-6n=-2 | | 3x-8+9x=16 |